Nas últimas décadas, o Machine Learning (aprendizado de máquina) surgiu como um componente-chave da automação. Com a democratização da internet, o aumento da presença online e mais dispositivos conectados, uma grande quantidade de informação é gerada. Agora as indústrias dependem cada vez mais de algoritmos para resolver problemas com boas garantias de soluções inteligentes.
Entenda neste artigo o conceito de Machine Learning, saiba como funciona, como e quando surgiu, quais os modelos e os benefícios para o seu negócio. Acompanhe!
É um ramo da Inteligência Artificial (IA) que apresenta sistemas com a capacidade de aprender automaticamente a aumentar sua precisão sem serem programados. O objetivo principal é permitir que os sistemas de máquinas aprendam por conta própria, sem qualquer forma de intervenção humana.
Um exemplo simples de Machine Learning é quando navegamos em lojas virtuais e o site recomenda um produto semelhante ao que procuramos. Ou, então, mostra uma combinação de itens com a mensagem: “a pessoa que comprou esse produto também comprou este”.
O algoritmo é orientado por meio de um conjunto de dados de treinamento para criar o modelo. Quando novos dados de entrada são introduzidos no algoritmo Machine Learning, uma previsão é feita.
Em seguida, ela é avaliada quanto à precisão e, se for aceitável, o algoritmo é implantado. Em caso de não aceitação, o algoritmo passa por outros treinamentos repetidas vezes. Esse é apenas um exemplo de alto nível, pois existem muitos fatores e diferentes etapas envolvidas.
Em 1943, o neurofisiologista Warren McCulloch e o matemático Walter Pitts redigiram um artigo sobre o funcionamento dos neurônios. A partir daí, os dois decidiram criar um modelo usando um circuito elétrico e, portanto, foi assim que a rede neural nasceu.
Em 1950, Alan Turing criou o mundialmente famoso Teste de Turing, no qual o computador simulava ações humanas. Outro exemplo precoce ocorreu em 1959, quando Bernard Widrow e Marcian Hoff criaram dois modelos na Universidade de Stanford. O primeiro foi chamado ADALINE e detectava padrões binários. A próxima geração foi chamada MADALINE e eliminava o eco nas linhas telefônicas. Por esse motivo, tinha uma aplicação útil no mundo real.
Em 1982, o interesse pelas redes neurais voltou a aumentar quando John Hopfield sugeriu a criação de uma rede com linhas bidirecionais, semelhante à maneira como os neurônios realmente funcionam.
Em 1997, o IBM Blue Deep, um computador de xadrez, venceu o campeão mundial de xadrez. Desde então, houve muito mais avanços no setor, como em 1998, quando pesquisas nos laboratórios da AT&T Bell com reconhecimento de dígitos resultaram em boa precisão na detecção de códigos postais manuscritos do Serviço Postal dos EUA.
São três os principais: supervisionado, não supervisionado e por reforço. Acompanhe a definição de cada um a seguir:
É um conjunto de dados que atua como professor com o objetivo de treinar o modelo ou a máquina. Depois disso, começa a fazer a previsão ou decidir quando novos dados são fornecidos.
O modelo aprende por meio da observação e encontra estruturas nos dados. Em seguida, busca padrões e relacionamentos no conjunto de dados, criando clusters.
É a capacidade de um agente interagir com o ambiente e descobrir qual é o melhor resultado. É recompensado ou penalizado com pontos por uma resposta correta ou errada. Com base na pontuação de recompensas positivas, o modelo treina a si próprio. E, novamente, uma vez treinado, se prepara para prever os novos dados apresentados.
Agora que você já sabe o que significa o aprendizado de máquina, conhece a origem e os modelos, acompanhe os benefícios de implementá-lo.
Uma análise mais profunda dos hábitos do cliente fornece informações valiosas sobre os padrões de compra. Imagine ser capaz de fazer inferências tão precisas quanto à razão pela qual o usuário escolhe um produto ou serviço em detrimento de outro?
As indústrias confiam em informações precisas para tomar as decisões corretas no momento ideal. O Machine Learning permite transformar grandes conjuntos de dados em conhecimento e inteligência acionável. As informações são integradas aos processos de negócios e atividades de rotina para responder às mudanças típicas do mercado.
O século passado foi marcado pela ineficácia da automação para substituir as operações manuais que exigiam considerações para parâmetros variáveis e alterações de sistemas imprevisíveis. A introdução das novas tecnologias ajudou a preencher esse vazio por meio de modelos de análise preditiva aplicados a pontos de dados que mudam em tempo real, oferecendo suporte a decisões e executando tarefas de automação.
Riscos à segurança cibernética, intrusões e anormalidades na rede geralmente ocorrem em tempo real, com pouco ou nenhum aviso prévio. Entretanto, os algoritmos monitoram o comportamento da rede em busca de erros no momento em que acontecem. A integração de sistemas também é importante nesse processo.
Dessa forma, é possível realizar medidas proativas automaticamente. Na medida em que dados os treinam, o estado da cibersegurança melhora continuamente, se adapta às mudanças e substitui a pesquisa e a análise manuais para desvendar insights específicos relacionados à segurança.
Com as tecnologias de aprendizado de máquina, a exemplo de chatbots e outros meios de comunicação com respostas automatizadas, o atendimento ao usuário é feito em escala. Além disso, o processo é feito a um custo mais baixo, com alta precisão e, principalmente, sem que fique esperando na fila de atendimento.
Percebeu como as indústrias que aproveitam o potencial do Machine Learning vão conseguir se posicionar à frente da concorrência e tomar medidas proativas para manter a vantagem competitiva em tempo real? Pense nisso!